Functional replacement of ferredoxin by a cyanobacterial flavodoxin in tobacco confers broad-range stress tolerance.
نویسندگان
چکیده
Chloroplast ferredoxin (Fd) plays a pivotal role in plant cell metabolism by delivering reducing equivalents to various essential oxidoreductive pathways. Fd levels decrease under adverse environmental conditions in many microorganisms, including cyanobacteria, which share a common ancestor with chloroplasts. Conversely, stress situations induce the synthesis of flavodoxin (Fld), an electron carrier flavoprotein not found in plants, which can efficiently replace Fd in most electron transfer processes. We report here that chloroplast Fd also declined in plants exposed to oxidants or stress conditions. A purified cyanobacterial Fld was able to mediate plant Fd-dependent reactions in vitro, including NADP+ and thioredoxin reduction. Tobacco (Nicotiana tabacum) plants expressing Fld in chloroplasts displayed increased tolerance to multiple sources of stress, including redox-cycling herbicides, extreme temperatures, high irradiation, water deficit, and UV radiation. Oxidant buildup and oxidative inactivation of thioredoxin-dependent plastidic enzymes were decreased in stressed plants expressing plastid-targeted Fld, suggesting that development of the tolerant phenotype relied on productive interaction of this flavoprotein with Fd-dependent oxidoreductive pathways of the host, most remarkably, thioredoxin reduction. The use of Fld provides new tools to investigate the requirements of photosynthesis in planta and to increase plant stress tolerance based on the introduction of a cyanobacterial product that is free from endogenous regulation in higher plants.
منابع مشابه
An in vivo system involving co-expression of cyanobacterial flavodoxin and ferredoxin–NADP+ reductase confers increased tolerance to oxidative stress in plants
Oxidative stress in plants causes ferredoxin down-regulation and NADP(+) shortage, over-reduction of the photosynthetic electron transport chain, electron leakage to oxygen and generation of reactive oxygen species (ROS). Expression of cyanobacterial flavodoxin in tobacco chloroplasts compensates for ferredoxin decline and restores electron delivery to productive routes, resulting in enhanced s...
متن کاملEnvironmental Selection Pressures Related to Iron Utilization Are Involved in the Loss of the Flavodoxin Gene from the Plant Genome
Oxidative stress and iron limitation represent the grim side of life in an oxygen-rich atmosphere. The versatile electron transfer shuttle ferredoxin, an iron-sulfur protein, is particularly sensitive to these hardships, and its downregulation under adverse conditions severely compromises survival of phototrophs. Replacement of ferredoxin by a stress-resistant isofunctional carrier, flavin-cont...
متن کاملEctopic expression of a cyanobacterial flavodoxin in creeping bentgrass impacts plant development and confers broad abiotic stress tolerance
Flavodoxin (Fld) plays a pivotal role in photosynthetic microorganisms as an alternative electron carrier flavoprotein under adverse environmental conditions. Cyanobacterial Fld has been demonstrated to be able to substitute ferredoxin of higher plants in most electron transfer processes under stressful conditions. We have explored the potential of Fld for use in improving plant stress response...
متن کاملSuppression of Reactive Oxygen Species Accumulation in Chloroplasts Prevents Leaf Damage but Not Growth Arrest in Salt-Stressed Tobacco Plants
Crop yield reduction due to salinity is a growing agronomical concern in many regions. Increased production of reactive oxygen species (ROS) in plant cells accompanies many abiotic stresses including salinity, acting as toxic and signaling molecules during plant stress responses. While ROS are generated in various cellular compartments, chloroplasts represent a main source in the light, and pla...
متن کاملEnhanced plant tolerance to iron starvation by functional substitution of chloroplast ferredoxin with a bacterial flavodoxin.
Iron limitation affects one-third of the cultivable land on Earth and represents a major concern for agriculture. It causes decline of many photosynthetic components, including the Fe-S protein ferredoxin (Fd), involved in essential oxidoreductive pathways of chloroplasts. In cyanobacteria and some algae, Fd down-regulation under Fe deficit is compensated by induction of an isofunctional electr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 18 8 شماره
صفحات -
تاریخ انتشار 2006